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Abstract

A fundamental problem with distributed applications is
how to map activities such as computation or data transfer
onto a set of resources that will meet the application’s re-
quirement for performance, cost, security, or other quality
of service metrics. An application or client must engage in a
multi-phase negotiation process with resource managers, as
it discovers, reserves, acquires, configures, monitors, and
potentially renegotiates resource access. We present a gen-
eralized resource management model in which resource in-
teractions are mapped onto a well defined set of symmet-
ric and resource independent service level agreements. We
instantiate this model in (the Service Negotiation and Ac-
quisition Protocol (SNAP) which provides integrated sup-
port for lifetime management and an at-most-once creation
semantics for SLAs. The result is a resource management
framework for distributed systems that we believe is more
powerful and general than current approaches. We explain
how SNAP can be deployed within the context of the Globus
Toolkit.

1 Introduction

A common requirement in distributed computing is to
negotiate access to, and manage, a resource that exists
within another administrative domain. Satisfaction of this
requirement is complicated by the competing needs of the
client and the resource owner. The client wants to under-
stand resource behavior while the owner wants to maintain
local control and discretion. We require resource manage-
ment (RM) mechanisms that reconcile these two competing
demands by enabling the negotiation of service-level agree-
ments (SLAs) by which a resource provider “contracts”

with a client to provide a some measurable capability, thus
allowing clients to understand what to expect from resource
owners. Such mechanisms must also address the inherently
volatile nature of the distributed environment, where the
nature of policy domains, applications, and communities
change dynamically, and faults are a normal occurrence.

The ability to negotiate SLAs is desirable as a means
both of ensuring a client’s ability to deliver a desired qual-
ity of service (QoS) to its user and as a means of permitting
objective comparison of alternative resource providers. In
addition, if a client can negotiate SLAs with a temporal di-
mension (“service S will be available at time T”), then they
can permit a client to coordinate or co-schedule resources
from different administrative policy domains, coordinating
resource schedules according to its knowledge of an overall
application activity schedule.

Such application-driven coordination requires that re-
sources present a rational behavioral model to clients. A
client cannot hope to know everything about a resource’s
behavior, but they must be able to understand, in some ab-
stracted form, what the resource will do for them. This un-
derstanding can be expressed in the form of SLAs that de-
scribe a provisioning of resource capacity or service qual-
ity by the resource for the client. This approach enables
a separation of concerns between resource and client: the
resource is not directly concerned with meeting applica-
tion goals, but merely with satisfying client provisioning
requirements, leaving the client to be responsible for meet-
ing its application scheduling goals by coordinating its ser-
vice agreements with one or more resources. Higher-level
brokers can also make provisioning agreements, but these
services in turn are clients to the underlying distributed re-
sources.

We propose here a resource management architecture
and supporting protocol based on these ideas. Building on a
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rich and extensible language for describing the form, initia-
tion time and duration of resource assignments, the Service
Negotiation and Acquisition Protocol (SNAP) defines mes-
sage exchanges for negotiating three types of SLAs:
� Resource acquisition agreements in which one negoti-

ates for the right to use (i.e. consume) a resource. For
example, an advance reservation takes the form of an
acquisition agreement.

� Task submission agreements inform a resource of the
existence of a task or activity. Such an agreement may
be associated, for example, with submitting a job to a
queuing system.

� Task/resource binding agreements associate an ac-
quired resource with a submitted activity, enabling
the activity empowered by the user to consume the
agreed upon resource capacity granted by the resource
provider.

To ensure reliable RM operation independent of transport
reliability, the protocol consists of idempotent operations
that maintain the service-side agreement state using a soft-
state semantics.

The RM approach proposed here extends techniques
first developed within the Globus Toolkit’s GRAM ser-
vice [9] and then extended in the experimental GARA sys-
tem [21, 22, 34]. An implementation of this architecture
and protocol can leverage a variety of existing infrastruc-
ture, including the Globus Toolkit’s Grid Security Infras-
tructure [19] and Monitoring and Discovery Service [8]. We
expect SNAP protocol to be easily implemented within the
Open Grid Services Architecture (OGSA) [18, 38], which
provides request transport, security, discovery, and moni-
toring.

2 Motivating Scenarios

The design of SNAP is motivated by our experiences
with Grid applications [16], which place numerous and of-
ten complex demands on RM services [22] due to the need
to deliver performance guarantees to users while executing
on heterogeneous mixes of resources.

These scenarios fall into two major categories, represent-
ing the perspective of application builders versus that of re-
source owners:
� Application scheduling attempts to optimize perfor-

mance from the perspective of goals, ideally by per-
mitting application control of any planning decision.

� Aggregate scheduling attempt to optimize performance
from the perspective of the resource provider (the
owner) or, in the case of multiple resources, from the
perspective of the community, ideally by permitting a
scheduler with complete knowledge of the resource to
control all planning decisions.
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Figure 1. Community scheduler scenario.
Multiple users (J1–J7) gain access to shared
resources (R1–R7). Community schedulers
(S1–S2) mediate access to the resources by
obtaining promises of capacity from the indi-
vidual resources and in turn make submission
agreements with the users.

However, the Grid is ripe with conflicting policies. Nei-
ther of these scheduling ideals is reached in practice, and
instead RM systems must focus on achieving a dynamic
balance between these ideals. Our RM architecture is struc-
tured around the negotiation of SLAs to solve this balancing
problem at run-time.

There are many familiar examples of resource capacity
assignment agreements: space-sharing computer reserva-
tions, storage reservation or pre-allocation, and communi-
cation or input/output quality of service (QoS) can all be
considered as capacity provisioning. The client obtains a
promise of resource availability that they may then exploit
in further application scheduling and resource control inter-
actions.

Similarly, there are existing scenarios for activity sub-
mission SLAs in which the client delegates the activity to
the resource with the agreement that it will accomplish the
assigned task: job execution, reliable file transfer, and other
batch control interfaces all provide more abstract guaran-
tees of delivery. The scheduler accepts responsibility for
performing an activity with some quality metrics such as
reliability or completion time. The complexity of real-
world scenarios comes from the combination of these sim-
ple SLAs. In the remainder of this section we explore two
such combined scenarios to introduce the basic structure of
our architecture.

2.1 Community Scheduler Scenario

In this scenario, a community scheduler negotiates ca-
pacity guarantees with a pool of underlying resources.
Users can then submit jobs to this community scheduler,
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Figure 2. File transfer scenario. File trans-
fer scheduler obtains disk and network reser-
vations before submitting transfer endpoint
jobs.

perhaps with deadline requirements. Users in this envi-
ronment interact with community and resource-level sched-
ulers as appropriate for their goals and privileges. A batch
job such as J7 in Figure 1 may not need resource promises,
nor the help of a community scheduler, because the goals
are expressed directly in the submission to resource R6. The
interactive job J1 needs a resource promise to better control
its performance. Jobs J2 to J6 are submitted to community
schedulers S1 and S2 which might utilize special privileges
or domain-specific knowledge to efficiently implement their
community jobs. Note that not all users require resource
promises from the community scheduler, but S1 does act as
a promise “reseller” between J2 and resource R3. Sched-
uler S1 also maintains a resource (R1) in an idle state to
more rapidly serve future high-priority job requests.

The agreement model abstracts away the impact of other
community schedulers as well as any “non-Grid” local
workloads, provided the resource manager enforces guaran-
tees at the resource. As depicted in Figure 1, a Grid environ-
ment may contain many resources (R1–R6), all presenting
an assignment interface as well as a submission interface;
multiple community scheduler services (S1 and S2) present
a submission interface to users, and some may also broker
resource promises.

Due to the complex Grid policy environment, the com-
munity schedulers usually are not authoritative over phys-
ical resources. Thus, the existence of the capacity agree-
ments simplifies the scheduler’s resource planning problem
in the face of competing workloads by other clients of the
same resource pool. The SLA negotiation protocol allows
them to coordinate their scheduling of resources shared with
other community and application schedulers, without nec-
essarily trusting those other schedulers. The only trust im-
plied in this scenario is the vertical trust encoded in the pair-
wise SLAs between the scheduler and the resource provider.

If User = Alice
  If Reservation_Type = Network
      Return GRANT
if User = Bob
    Return DENY

If Reservation_Type = Network
  If Accredited_Physicist(requestor)
      Return GRANT
  Else
    Return DENY

CharlieAlice

Policy File: Policy File:

Domain A Domain B

Figure 3. End-to-end resource requirements
involve coordination of resources from com-
plex heterogeneous policy environments.

2.2 File Transfer Service Scenario

In this scenario, users submit a file transfer job to a com-
munity scheduler. The scheduler understands that a trans-
fer requires substantial storage space on the destination re-
source, and substantial network and endpoint I/O bandwidth
during the transfer. This situation extends the Community
Scheduler scenario with the ability to manage multiple re-
source types and perform co-scheduling of these resources.

As depicted in Figure 2, the file transfer scheduler S1
presents a scheduler interface, and a network resource man-
ager R2 presents a resource-assignment interface. A user
submits a transfer job such as J1 to the scheduler with a
deadline. The scheduler obtains a storage pre-allocation
on the destination resource R3 to be sure that there will be
enough space for the data before attempting the transfer (in
essence, a storage pre-allocation is an open-ended reserva-
tion that occurs in many first-come, first-served storage pol-
icy environments). Once space is allocated, the scheduler
obtains bandwidth reservations from the network and the
storage devices, giving the scheduler confidence that the
transfer can be completed within the user-specified dead-
line. Finally, the scheduler submits transfer endpoint jobs
J2 and J3 to implement the transfer J1 using the space and
bandwidth promises.

The distributed applications common in Grid environ-
ments exacerbate the coordination problems described for
community schedulers. Not only do SLAs coordinate use
of resources by mutually distrustful schedulers, they also
coordinate the use of distrustful resources for a single ap-
plication goal. The file transfer scenario emphasizes such
distributed goals by requiring real-time coordination of sig-
nificant endpoint and network capability.

2.3 Policy Complications

As mentioned above end-to-end services often require
the co-scheduling of several distinct resources. A number
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of technical issues complicate the co-scheduling process.
Co-scheduling can require negotiation with resource own-
ers in each of several distinct administrative domains. Each
domain may have different policies governing who can use
its resources and for what purposes, and different trust re-
lationships with individual users. For example, in Figure 3,
domain A’s policy might state that “Alice can use the net-
work, Bob cannot,” while domain B’s policy is that “only
accredited physicists can use the network.”

A policy expressed in one domain can also be depen-
dent on conditions in other domains. For example, domain
A may wish to enforce the policy “I will only authorize a
reservation if reservations have also been approved for all
other resources in the end-to-end path.” Or, domain B might
only authorize bandwidth greater than 10 Mb/s if domain A
has a valid assignment agreement for a consumer. As stated
above, the resource description language is compositional
and thus automatically capable of expressing these depen-
dencies.

2.4 Scalability Concerns

Scalability demands that every resource should not have
a direct trust relationship with every user. While some do-
mains know about individuals (e.g., domain A), others must
be able to delegate responsibility for personal trust relation-
ships to third parties. (For example, domain B agrees to
provide resources to anyone whom a third party accredits as
a “physicist.”). By virtualizing a set of resources from other
managers for the benefit of its user community we can elim-
inate the direct relationship between end-users and resource
providers. Following the concept of the Community Autho-
rization Service (CAS) [31], the intermediate Community
Scheduler interacts with the resource providers on behalf of
the whole community and is thus the entity of interest.

If a set of applications creates many parallel flows be-
tween the same two end-domains, it is infeasible to nego-
tiate agreements for each one. Not only do agreements
require non-trivial storage and computational resources to
be implemented in some types of manager, but the shear
number of SNAP negotiation messages could be impractical
for some flows. We address agreement scalability with ag-
gregate scheduling in Section 4, permitting multiple claims
against the same acquisition agreement as well as composite
tasks in submission and task/resource binding agreements.

2.5 Resource Virtualization

In the scenarios above, the Community Scheduler virtu-
alizes a set of resources from other managers for the benefit
of its community of users. This type of resource virtual-
ization is important as it helps implement the trust relation-
ships that are exploited in Grid applications. The user com-
munity trusts their scheduler to form agreements providing
resources or performing tasks, and the scheduler has its own

trust model for determining what resources are acceptable
targets for the community workload.

Another type of virtualization in dynamic service envi-
ronments like OGSA is the factory service. A manager in
such an environment is a factory, providing a long-lived
contact point to initiate RM agreements. The RM factory
exposes the agreements as set of short-lived, stateful ser-
vices which can be manipulated to control one agreement.
Resource virtualization is particularly interesting when the
agreement runs a job which can itself provide Grid services.
This process is described for active Grid storage systems in
[7], where data extraction jobs convert a compute cluster
with parallel storage into a high-performance data server.
Such an action can be thought of as the dynamic deploy-
ment of new services “on demand,” a critical property for a
permanent, but adaptive, global Grid [20].

3 A Model of Resource Management

In this section, we present an abstract model of resource
management that captures the process from the perspec-
tive of the resource consumer (e.g. in terms of resource
requirements) and the resource provider (e.g. in terms of
promised resource capabilities). We describe the connec-
tions between these abstractions in more detail below in
Section 3.1, before formalizing an agreement language in
Section 3.2.

3.1 Abstracting Resource Management

The root of resource management is orchestrating the
consumption of some resource by an activity. However, as
implied by scenarios from Section 2 the process of getting
to this end result is different when from the perspective of
the resource consumer or the resource provider. The re-
lationship between these different perspectives is captured
in Figure 4. The consumer’s perspective is shown on the
right, and is concerned with discovering, acquiring and ul-
timately using resources. The left-hand side of the figure
shows the resource providers perspective, being concerned
with how to accept tasks or activities and how to map them
onto the resources capabilities, again, resulting in resource
consumption.

3.1.1 Concrete Utilization

At the core of the resource management model (Figure 4)
is the concrete utilization of resources, where real work is
done by expending resources on activities. All other re-
source management concepts serve to abstract some aspect
of this utilization for the purpose of understanding or com-
munication. An example of resource utilization would be
the control of a particular executable program or procedure
with appropriate parameters for the activity at hand. As im-
plied in the figure, concrete utilizations occur on discrete
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Figure 4. Grid RM abstraction domain. Resource utilization can be interpreted variously from a
task-centric and resource-centric perspective; both are useful for understanding the task planning
process.

resources over finite time intervals. Any required order-
ings are enforced by sequencing of request and completion
events.

3.1.2 Submission and Acquisition Abstraction

Resource capability rights are obtained prior to, or simul-
taneously with, concrete utilization. Thus in our model, re-
source utilization is achieved by the merging of two separate
abstract resource management paths: one representing the
abstraction of a resource into the schedule of activities or
tasks for which the resource will be used, and the second
representing the assignment of capability for unspecified
use. As illustrated in Figure 4, activities are manipulated
by engaging in a submission operation, while capability is
manipulated via acquisition. The two are bound together to
create a concrete utilization.

Thus withing the proposed model, a schedule has quan-
tifiable requirements, and the acquired resource capability
satisfies those requirements. A broker tracking both ab-
stractions can thus implement the schedule by matching
the requirements with the capabilities of the controlled re-
sources.

3.1.3 Requirements-driven Discovery Abstraction

An application planner is imbued with a task plan involv-
ing work-flow dependencies and requirements. Resource
discovery informs the task planner of managed resource
pools such that evaluation and acquisition may commence.
This level is distinguished from the lower scheduling and
acquisition level by its imprecision. The activity require-
ments may involve application deadlines or other run-time
constraints but they do not yet identify a specific resource-
bound execution plan. The discovery pool consists of all

known resources that might satisfy these activity require-
ments. The scheduler evaluates the members of the pool to
select candidate resources; but until the scheduler success-
fully acquires a target subset from these candidates, there is
no uniquely identified task plan.

3.2 Agreement Language

The previously introduced abstractions scope the mean-
ing of an expressive resource language. We formalize the
structure of such a language later in Section 5, but let us
imagine for the moment an activity (job) language J ca-
pable of expressing activity plans and requirements. Let
us further assume a resource language R

�
J rich enough

to express resource provisioning metrics, whether for re-
quirements in instances of J or as stand-alone provisioning
statements. We can then begin to formalize the language of
agreement which is parameterized to include capability or
quality instances �
	 R, or activity instances ��	 J.

In the following formalization, the resource language R
is expected to model capability or quality over time. We
annotate an abstract capability � to fix it to a particular time
interval, e.g. �� ����� ����� restricts the described capability � to
times between ��� and ��� . Furthermore, an agreement can
only pertain to the future (since anything in the past is no
longer subject to agreement but rather to auditing). There-
fore at wall-clock time ��� , any agreement regarding �  ����� ����� ,
where ���! "���# "��� , can be normalized to the current time
as �  ��$%� ����� . As a short-hand we will use non-normalized ex-
pressions such as �  � � ����� , rather than constantly having to
formally define the current wall-clock time.
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3.3 Limited Trust in Agreements

In the remainder of this section we define an agreement
language within which promises of resource availability, job
execution, and resource utilization are expressed. These
promises model the expected behavior of the RM service
with which the client establishes the agreement, but we do
not attempt to model the quality or veracity of an RM ser-
vice.

Ideally, managers should not make agreements ex-
pressed with provisioning requirements that the manager
cannot or will not observe. However, due to the possibil-
ity of faults and the possibility of preemption by higher-
priority requests, it is possible that an agreement will be
violated after acceptance. It is assumed that a monitoring
infrastructure will be in place to augment this RM service
protocol, such that clients can monitor the health and sta-
tus of the manager and their agreements. We assume the
activity language J would be expressive enough to capture
varying degrees of commitment in a requirements descrip-
tion. We also assume a language for describing the status
of agreements, or agreement elements—a minimal model
would capture the agreement states depicted later in Sec-
tion 4.1 and Figure 5, but a better model would allow exten-
sion with application-specific states to better communicate
application progress.

It is beyond the scope of the Grid RM system to define
how much a client can rely on the promises of a sched-
uler, as this is essentially a trust policy between the user
and scheduler. The more trustworthy a scheduler or man-
ager, the more confidence the user might have in agreements
made with the manager. If not in a completely ad-hoc man-
ner, this sort of trust must be established via security and in-
formation services; for example by inquiring with a trusted
accrediting service [26]. One can also imagine imposing
penalties if an agreement is not satisfied.

3.3.1 Assignment Agreements

We represent an assignment of resource capability or ser-
vice quality � from manager � to client � over time period� ����������� by a tuple with the form:

�����
	 ���� ���������  ����� �������

For example, the configuration of a local RM system M by
an organization O could include a delegation of the comput-
ing resources R for all time:

�����
	 ������ �������  � � �����

and this delegation record could be used by the manager to
model what delegations it is capable of issuing.

Using predictive techniques [12, 41, 35], it is possible for
a manager to provision resources that are not yet available
to the manager. Therefore, the Grid RM agreement protocol

only models the pair-wise assignment promises ��� made
by a manager M to clients � :

���! #" �����
	 ���$ ��������� ��%

where the universe of assignment tuples has of course been
restricted to successfully negotiated agreements.

3.3.2 Submission Agreements

Symmetric to assignment, the submission state &(' of a
scheduling agent models the commitments the scheduler S
has made to clients � , that an activity � will be performed
according to its self-expressed requirements:

&)'� *",+.-0/1-0/  ���324��� �5%

and the creation and management of this state is defined
below in the protocol definition.

3.3.3 Utilization Agreements

The utilization of a resource � in implementing an activity �
may be also represented as an agreement. This representa-
tion is useful as it captures the association of pre-existing re-
source promises and activities, whether initiated by clients
or established internally by the scheduling algorithm. As
will be explained in Section 4.5, activities may be refer-
enced that are not part of a submission agreement and we
exploit the activity language J assuming that it allows ref-
erence to external activities. These agreements also might
serve as a language for describing scheduler state through a
monitoring interface.

Similar to assignment and submission, the utilization
state 67� of a manager models the commitments the man-
ager M has made to clients � :

67�* #" �98080: ;� ������������� �,%

This agreement indicates the manager M’s commitment to
clients � that an existing resource capability referenced by �
be applied to the activity referenced by � .

4 The SNAP Agreement Protocol

The core of our RM architecture is a client-service in-
teraction used to negotiate service-level agreements. These
agreements can be viewed as establishing transitory addi-
tions to the policy environment of a resource manager, ex-
pressed using the agreement language from Section 3.2.
The protocol applies equivalently when talking to author-
itative, localized resource owners or to intervening brokers.

There are two levels to this interaction. First, there is
a set of abstract message-based operations that atomically
change the policy state of the remote endpoint. Second,
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Figure 5. Agreement state transitions. As-
signment and submission agreements get as-
sociated by utilization agreements and may
eventually terminate due to client operations
or expiration.

short-term connection or messaging state is used to trans-
mit and reassemble the more abstract messages. In this ar-
ticle we focus on the pattern and meaning of the abstract
messages and leave details of the transport state to be deter-
mined by a suitable low-level specification.

We describe each operation in terms of unidirectional
messages sent from client to service or service to client. All
of these operations follow a client-server remote procedure-
call (RPC) pattern, so we assume the underlying transport
will provide correlation of the initiating and response mes-
sages. One way of interpreting the following descriptions
is that the client to service message corresponds to the RPC
call, and the return messages represent the possible result
values of the call. This interpretation is consistent with how
such a protocol would be deployed in a Web Services or
OGSA environment, using WSDL to model the RPC mes-
sages [6, 1].

4.1 Agreement State Transitions

The association of submitted activities with acquired re-
sources in a utilization agreement is not always a protocol
operation, but is nonetheless an observable transition of the
service state, as depicted in Figure 5. In essence there are
four states through which planning progresses:

S1: Submitted activities or acquired resources are not
matched with each other.

S2: Submitted activities are matched with appropriate re-
source acquisitions, and this grouping represents a re-
source utilization agreement meant to resolve the ac-
tivity.

S3: Acquired resources are being utilized for a submitted
activity and can still be controlled or changed.

S4: The agreements have been resolved either by success-
ful completion of the activity, or by expiration or can-
cellation of the agreements.

These states have a relationship to protocol messages in
that client messages can only create or operate on active
agreements and inactive or finalized agreements can only
occur as a result of client messages and the passing of time.
However, the figure simplifies the situation in that the state
changes are not actually synchronized between submission
and assignment agreements. Related submission or acquisi-
tion agreements may in fact move through these planning
states at different rates, because activities may share the
same resource capability but also may consume different
capabilities sequentially.

4.2 Idempotence and Lifetime

Resource management has important fault-tolerance re-
quirements. In many situations, it can be more impor-
tant that a recovery model be predictable rather than op-
timized for some particular behavior. On the one hand, it is
important that agreement creation be unambiguous: many
scheduling and planning activities must be able to deter-
mine with high confidence that an agreement either has, or
has not, been initiated. On the other hand, agreements are
sometimes “orphaned” due to unexpected failures or even
just sloppy users—it is desirable to be able to reclaim re-
sources provisioned to these orphans if such reclamation
can be done while maintaining the guarantees of unambigu-
ous agreement.

We believe that idempotence (i.e. at most once seman-
tics) combined with expiration is well-suited to achieving
both goals for fault-tolerant agreement. We define our op-
erations as atomic and idempotent interactions that cre-
ate agreement statements in the manager. Each agreement
statement has a termination time, after which a well-defined
reclamation effect occurs. This termination parameter can
be exploited at runtime to implement a spectrum of negoti-
ation strategies: a stream of short-term expiration updates
could implement a heart-beat monitoring system [36] to
force reclamation in the absence of positive signals, while
a long-term expiration date guarantees agreement state will
persist long enough to survive transient outages.

A client is free to re-issue requests, and a manager is re-
quired to treat duplicate requests received after a successful
agreement as being equivalent to a request for acknowledg-
ment on the existing agreement. In the case of failure, the
client cannot distinguish whether a manager recognizes du-
plication. This idempotence is achieved in part by introduc-
ing a mechanism for establishing a unique name for each
agreement.
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Figure 6. RM protocol messages. The proto-
col messages initiate operations that change
the agreement state of the manager.

4.3 Support Operations

4.3.1 Allocate Identifier Operation

There are multiple approaches to obtaining unique identi-
fiers suitable for naming agreements. To avoid describing
a security infrastructure-dependent approach, we suggest a
special light-weight agreement to allocate identifiers from
a manager. This operation is analogous to opening a timed
transaction in a database system. The client sends:

���������	��
��� �����������
asking the manager to allocate a new identifier that will be
valid until time ��������� . On success, the manager will re-
spond: �	� �����	��
����� �������������
and the client can then attempt to create reliable RM agree-
ments using this identifier as long as the identifier is valid.
The main agreement operations, described below, atomi-
cally reassign � from a self-labeled identifier agreement to
label their respective RM agreement.

4.3.2 Set Termination Operation

To support a wide range of fault-recovery techniques, the
lifetime of an existing agreement can be updated. With this
operation, a client can set a new termination time for the
state. The client changes the lifetime by sending a message
of the form: � �����	���������� �������������

where ��������� is the new wall-clock termination time for the
existing agreement state labeled by � . On success the man-
ager will respond with the new termination time:

� �������	��� �� �������������
and the client may reissue the

� �����	���������!�!�! � message if
some failure blocks the initial response. Throughout this
protocol proposal, agreements can be abandoned with a
simple request of

� �����	���������� ��"�� which forces expiration
of the agreement.

The lifetime represented by ��������� is the lifetime of the
agreement named by � . If the agreement makes promises
about times in the future beyond its current lifetime, those
promises expire with the agreement statement, no matter the
details of the promise. Thus, it is a client’s responsibility
to extend or renew a future promise for the full duration
required.

4.4 Agreement Operations

The protocol provides a way for clients to enter into
agreements with managers as described in Section 3.2: as-
signment agreements are promises of resource availability;
submission agreements are promises of activity scheduling;
and utilization agreements are promises of resource appli-
cation to an activity. Submission agreements are established
explicitly using the submission operation described below.
Assignment agreements can be established explicitly using
the acquisition operation described below, and they may
also be established implicitly when an activity scheduler
plans the completion of a submitted activity.

There are three ways that utilization agreements are es-
tablished in our architecture. A submitted activity descrip-
tion � may refer to an existing assignment agreement in the
manager. Likewise, an assignment agreement description
� may refer to an existing submission agreement. In these
cases, the scheduler knows to apply the resource promise
to facilitate the completion of the activity. The final form
of utilization is through an explicit claim operation that in-
forms the local RM system to bind resources to an ongoing
activity.

All managers need not present all three interfaces in our
architecture. A goal-oriented job scheduler might only ac-
cept jobs with performance goals such as completion time
or real-time responsiveness. A computer reservation system
might provide assignments of processing nodes and job sub-
mission “into” those processing nodes without permitting
reversed binding of nodes to existing jobs. When this archi-
tecture is mapped into an implementation model and ser-
vice environment, these interface policy preferences must
be represented clearly to enable client discovery of manager
capability.
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4.4.1 Submission Operation

The submission operation is initiated by a client and re-
sults in a new activity agreement being accepted within the
scheduler S if the operation is successful. On failure to
accept an activity agreement, S’s state is unchanged. The
client C initiates an agreement attempt by sending:������� � � �� � � �����������������
The resource description � captures all the temporal and
other requirements of the client. On success, S will respond
with a message of the form:

�������
		�����  +.-0/1-0/ �� �324��� �  � � ����������� �
After the accept, the client C knows that the new activity
agreement exists in the scheduler S:

+.-0/1-0/ �� �324��� �  � � �������� �� 	�&)' !
In other words, the scheduler S agrees to run job � on be-
half of the client C. The agreement does not imply that the
job is running, but merely that S has agreed to fit the job
into its schedule while satisfying the requirements stated in
� . The agreement will remain in the scheduler’s state un-
til time ��������� unless the client performs a

� �����	���������� ��� �
operation to change its scheduled lifetime. Any temporal
requirements of the job are captured in the description � ,
but the scheduler may abandon the agreement and reclaim
resources if the agreement expires before the job has been
completed.

4.4.2 Acquisition Operation

The acquisition operation is initiated by a client and results
in a new resource provisioning agreement within the man-
ager M if the operation is successful. On failure, M’s state is
unchanged. The client C initiates the operation by sending
a message of the form:

����� � ��� � �� � � �����������������
The resource description � captures all the temporal and
other requirements of the client. On success, M will re-
spond with a success message of the form:

��� � 
������  �����
	 ���� ��� � ��� �  � � �������� �� �
After the grant, the client C knows that a new provisioning
agreement exists in the manager M:

�����
	 ���� ��� � ��� �  � � ����������� 	 ��� !
In other words, the manager M agrees to make resource �
available to client C. The agreement does not imply that
the resource is idle or actively assigned to C, but that C
should expect success when it tries to claim the resource.
The agreement will remain in the manager’s state until time
��������� unless the client performs a

� �����	���������� ��� � operation
to change its scheduled lifetime.

4.5 Claim Operation

The claim operation is initiated by a client and results
in a new utilization agreement with the manager M if the
operation is successful. On failure, M’s state is unchanged.
The client C initiates by sending:

����� � � �� � � ���������������������
The description � references an existing assignment agree-
ment between M and C, and the activity description � refer-
ences an existing activity. On success, M will respond to C
with a message of the form:

����� 
	�� �98080: ;� ��� � ������� �  � � �������� �� �
After the bind, the client C knows that a new utilization
agreement exists in the manager M:

�98080: ;$ ��� � ������� �  � � �������� �� 	 67� !
The claim operation allows referencing of activities not
known at the time of the resource assignment, which are
not necessarily initiated through the activity submission in-
terface. A typical example is the specification of the client
port-number for network reservation. This information is
typically not available in advance. The description � may
often reduce to ��� referencing an assignment already in
place. In the degenerate case of an existing activity agree-
ment between M and C, � reduces to ��� . For external activ-
ities such as a network communication channel, the exten-
sible aspects of the language J are exploited to identify the
activity.

4.6 Change

Finally, we support the common idiom of atomic change
by allowing a client to resend the same initiating message
identifier and format, but with modified requirement con-
tent. The service will respond as for an initial request, or
with an error if the given change is not possible from the ex-
isting RM state. When the response indicates a successful
state, the client knows that the original agreement named by� has been replaced by the new one depicted in the response.
When the response indicates failure, the client knows that
the state is unchanged from before the request.

In essence, the service compares the incoming initiation
request with its internal policy state to determine whether
to treat it as a create, change, or lookup. The purpose of
change semantics are to preserve state in the underlying re-
source behavior where that is useful, e.g. it is often possible
to preserve an I/O channel or compute task when QoS lev-
els are adjusted. Whether such a change is possible may
depend both on the resource type, implementation, and lo-
cal policy. If the change is refused, the client will have to
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initiate a new request and deal with the loss of state through
other means such as check-pointing.

Change is also useful to adjust the degree of commit-
ment in an agreement. An expected use is to monoton-
ically increase the level of commitment in a promise as
a client converges on an application schedule involving
multiple resource managers, essentially implementing an
arbitrary-length, timed, multi-phase commit protocol across
the managers which may be in different administrative do-
mains. However, there is no requirement for this monotonic
increase—a client may also want to decrease the level of
commitment if they lose confidence in their application plan
and want to communicate a relaxation to the manager.

5 Resource and Schedule Language

The resource and scheduling language assumed in Sec-
tion 3.2 plays an important role in our architecture. Because
resources are often shared or virtualized in a Grid environ-
ment, resource description is more important than resource
naming. Clients in general must request resources by prop-
erty, e.g. by capability, quality, or configuration. Similarly,
clients must understand their assignments by property so
that they can have any expectation of delivery in an environ-
ment where other clients’ assignments and activities may be
hidden from view.

We believe that resource description must be dynami-
cally extensible. Sets of clients and resources must be able
to define new resource semantics to capture novel devices
and services, so the language should support these exten-
sions in a structured way. A complex new semantics can be
captured by composing existing primitives, and hopefully
large communities will be able to standardize a relatively
small set of such primitives.

5.1 Capacity Metrics

Many resources have parameterized attributes, i.e. a met-
ric describing a particular property of the resource such as
bandwidth, latency, or space. Resource assignments will
scope these metrics to a window of time

� ���������3� in which
the client desires access to a resource with the given quali-
ties. We use a generic scalar metric and suggest below how
they can be composed to model conventional resources.

A scalar metric can exactly specify resource capacity.
Often requirements are partially constraining, i.e. they iden-
tify ranges of capacity. We extend scalar metrics as unary
inequalities to use the scalar metrics as a limit. The limit
syntax can also be applied to time values, e.g. to specify a
start time of “ � � ” for a provisioning interval that starts “on
or before” the exact time � .

Time metric � expressed in wall-clock time, e.g. “Wed Apr
24 20:52:36 UTC 2002.”

Scalar metric ��� expressed in real valued units, e.g.����� �
	 ;�� / � , ��� �
	 ;�� / ���� , or
� "�� � "���� ���� /1/�� .

Max limit  � and � � specify an exclusive or inclusive
upper limit on the given metric � , respectively.

Min limit � � and � � specify an exclusive or inclusive
lower limit on the given metric � , respectively.

These primitives are “leaf” constructs in a structural re-
source description. They define a syntax, but some of their
meaning is defined by the context in which they appear.

5.2 Resource Composites

The resource description language is compositional. Re-
alistic resources can be modeled as composites of simpler
resource primitives. Assuming a representation of resources
� � , ��� etc. we can aggregate them using various typed con-
structs. For convenience in naming and identifying re-
sources, we use an optional notation  � � � where the iden-
tifier � is an arbitrary name for the resource � . Identifiers
for siblings in a composite must be unique in order to be
meaningful.

Typed Group �  � � � � � �  ��� � ��� � !�!�! � � �"!�# combining arbi-
trary resources. Groups are marked with a type to
convey the meaning of the collection of resources,
e.g.

� � �$	 ;�� / � �%�$�&	 ;�� / ���� � ��' ( ) might collect space and
bandwidth metrics for a “file-system” resource.

Array *+� � is an abbreviation for the group of identical
resource instances

�  � � � �  � � � � !�!�! �  � �%, � �"- - �/. , e.g. for
convenient expression of symmetric parallelism.

The requirements expressed in R may capture compli-
cated temporal constraints. For example, an important
metric of a resource might denote an instantaneous prop-
erty 0  � � restricted to a range � �1�20  � �3�4�$� . Such
a property can also be abstracted over the time domain
to denote an accumulation 5 ������ 0  � ��6 � or an average value 5 ������ 0  � ��6 � � � ���87���� � , each of which could be constrained
as an equality or inequality. The purpose of typed groups
is to provide this denotational context to the metric values
inside—in practice the meaning is denoted only in an exter-
nal specification of the type, and the computer system in-
terrogating instances of R will be implemented to recognize
and process the typed composite.

Resources are required over periods of time, i.e. from a
start time ��� to an end time � � , and we denote this as �  ����� ����� .
A complex time-varying description can be composed of a
sequence of descriptions with consecutive time intervals:

�� :9 � � ���  ����� ����� � � ��� �  ��� � � � � � !�!�! � � � , �  � ;=<���� � ; � >  ��� � � ; �
Each subgroup within a composite must have a lifetime
wholly included within the lifetime of the parent group.
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Figure 7. Hypothetical resource description. A parallel computer with 128 dedicated dual-processor
nodes, each providing at least 256 MB of memory and 1 GB disk with disk performance of 30 MB/s,
connected by Myrinet-enabled MPI. A parse tree is provided to help illustrate the nested expression.

5.3 Resource Alternatives

We define disjunctive alternatives to complement the
conjunctive composites from section 5.2.

Alternative �  � �������9� ! ! ! � differs from a resource group in
that only one element ��� must be satisfied, rather than
all.

As indicated in the descriptions above, limit modifiers are
only applicable to scalar metrics, while the alternative con-
cept applies to all resource description elements. Alterna-
tives can be used to express alternate solution spaces for the
application requirements within distinct planning regimes,
or to phrase similar requirements using basic and special-
ized metrics in the event that a client could benefit from
unconventional extensions to R that may or may not be sup-
ported by a given manager.

5.4 Resource Configuration

The final feature present in our description language is
the ability to intermingle control or configuration infor-
mation within the resource statement. In a trusting envi-
ronment, this intermingling is merely a notational conve-
nience to avoid presenting two isomorphic statements—one
modeling the requirements of the structured resource and
one providing control data to the resource manager for the
structured resource. Task configuration details are what are
added to the language R to define the activity language J.

Configure � �   � specifies an arbitrary configuration at-
tribute � should have value � .

Utilize use �  "! ! � � references an existing resource assign-
ment required to implement the activity.

Apply bind �  $# ! � � references an existing activity sub-
mission for which an additional resource is being re-
quested.

In an environment with limited trust and permissions, some
resources may be unavailable for certain configurations due

to arbitrary policy. We therefore treat them as primitive met-
rics when considering the meaning of the description for
resource selection, while also considering them as control
data when considering the meaning of the description as an
activity configuration.

6 Implementing SNAP

The RM protocol architecture described in this article is
general and follows a minimalist design principle in that the
protocol captures only the behavior that is essential to the
process of agreement negotiation. We envision that SNAP
would not be implemented as a stand alone protocol, but
in practice would be layered on top of more primitive pro-
tocols and services providing functions such as communi-
cation, authentication, naming, discovery, etc. For exam-
ple, the Open Grid Services Architecture [18] defines basic
mechanisms for creating, naming, and controlling the life-
time of services and in the following, we explore how SNAP
could be implemented on top of the OGSA service model.

6.1 Authentication and Authorization

Because Grid resources are both scarce and shared, a
system of rules for resource use, or policy, is often asso-
ciated with a resource to regulate its use [39]. We assume a
wide-area security environment such as GSI [19] will be in-
tegrated with the OGSA to provide mutually-authenticated
identity information to SNAP managers such that they may
securely implement policy decisions. Both upward infor-
mation flow and downward agreement policy flow in Fig-
ure 8 are likely subject to policy evaluation that distin-
guishes between clients and/or requests.

6.2 Resource Heterogeneity

The SNAP protocol agreements can be mapped onto a
range of existing local resource managers, to deploy its ben-
eficial capabilities without requiring wholesale replacement
of existing infrastructure. Results from GRAM testbeds
have shown the feasibility of mapping submission agree-
ments onto a range of local job schedulers, as well as simple
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Figure 8. An integrated RM system. Discovery services provide indexed views of the resources to
users, and RM services provide complementary access to resources.

time-sharing computers [15, 4, 33]. The GARA prototype
has shown how resource capacity assignments and resource
claiming can be mapped down to contemporary network
QoS systems [21, 22, 34]. Following this model, SNAP
manager services represent adaptation points between the
SNAP protocol domain and local RM mechanisms.

6.3 Monitoring

A fundamental function for RM systems is the abil-
ity to monitor the health and status of individual services
and requests. Existing Grid RM services such as GRAM
and GARA include native protocol features to signal asyn-
chronous state changes from a service to a client. In addi-
tion to these native features, some RM state information is
available from a more generalized information service, e.g.
GRAM job listings are published via the MDS in the Globus
Toolkit [9, 21, 8].

We expect the OGSA to integrate asynchronous sub-
scription/notification features. Therefore, we have omit-
ted this function from the RM architecture presented here.
An RM service implementation is expected to leverage this
common infrastructure for its monitoring data path. We
believe the agreement formalisms presented in Section 3.2
suggest the proper structure for exposing RM service state
to information clients, propagating through the upward ar-
rows in Figure 8. Information index services can cache and
propagate this information because life-cycle of the agree-
ment state records is well defined in the RM protocol se-
mantics, and the nested request language allows detailed
description of agreement properties.

6.4 Resource and Service Discovery

As described in Section 3.1, Grid RM relies on the abil-
ity for clients to discover RM services. We expect SNAP
services to be discovered via a combination of general dis-
covery and registry services such as the index capabilities
of MDS-2 and OGSA, client configuration via service reg-
istries such as UDDI, and static knowledge about the com-
munity (Virtual Organization) under which the client is op-
erating. The discovery information flow is exactly as for
monitoring in Figure 8, with information propagating from
resources upward through community schedulers and into
clients. In fact, discovery is one of the purposes for a gen-
eral monitoring infrastructure.

Due to the potential for virtualized resources described
in Section 2.5, we consider “available resources” to be a
secondary capability of “available services.” While service
environments provide methods to map from abstract service
names to protocol-level service addresses, it is also critical
that services be discoverable in terms of their capabilities.
The primary capability of an RM service is the set of agree-
ments it offers, i.e. that it is willing to establish with clients.
As mentioned in Section 4.4, this set of agreements can be
statically limited in the RM interface depending on what
subset of submission, acquisition, or claiming negotiations
are supported.

6.5 Multi-phase Negotiation

There are dynamic capabilities that also restrict the
agreement space, including resource load and RM policy.
Some load information may be published to help guide
clients with their resource selection. However, proprietary
policy including prioritization and provider SLAs may ef-
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fect availability to specific classes of client.
The agreement negotiation itself is a discovery process

by which the client determines the willingness of the man-
ager to serve the client. By formulating future agreements
with weak commitment and changing them to stronger
agreements, a client is able to perform a multi-phase com-
mit process to discover more information in an unstruc-
tured environment. Resource virtualization helps discov-
ery by aggregating policy knowledge into a private discov-
ery service—a community scheduler can form provision-
ing SLAs with application service providers and then ex-
pose this virtual resource pool through community-specific
agreement offers.

6.6 Resource Language

In Section 5 we present the abstract requirements of an
expressive resource language J. These requirements include
unambiguous encoding of provisioning metrics, job config-
uration, and composites. We also identify above the prop-
agation of resource and agreement state through monitor-
ing and discovery data paths as important applications of
the resource language. For integration with the OGSA,
we envision this language J being defined by an XML-
Schema [13] permitting extension with new composite el-
ement types and leaf types. The name-space features of
XML-Schema permit unambiguous extension of the lan-
guage with new globally-defined types.

This language serves the same purpose as RSL in
GRAM/GARA [9, 10, 21, 22] or Class Ads in Condor [32,
27]. We suggest a more extensible model for novel resource
composites than RSL and a more rigorously typed extension
model than Class Ads, both of which we believe are neces-
sary for large-scale, inter-operable deployments.

7 Agreements Represent Delegation

In the preceding protocol description, mechanisms are
proposed to negotiate agreement regarding activity imple-
mentation or resource provisioning. These agreements cap-
ture a delegation of resource or responsibility between the
negotiating parties. However, it is important to note that
the delegation concept goes beyond these explicit agree-
ments. There are analogous implicit delegations that also
occur during typical RM scenarios.

The submission agreement delegates specific responsi-
bilities to the scheduler that are held by the user. The sched-
uler becomes responsible for reliably planning and enacting
the requested activity, tracking the status of the request, and
perhaps notifying the user of progress or terminal condi-
tions. The acquisition agreement delegates specific resource
capacity to the user that are held by the manager. Depending
on the implementation of the manager, this delegation might
be mapped down into one or more hidden operational policy

statements that enforce the conditions necessary to deliver
on the guarantee. For example, a CPU reservation might
prevent further assignments from being made or an internal
scheduling priority might be adjusted to “steal” resources
from a best-effort pool when necessary.

7.1 Delegation is Transitive

Transfers of rights and responsibilities are transitive in
nature, in that an entity can only delegate that which is del-
egated to the entity. It is possible to form promise agree-
ments about delegation out of order, but in order to exploit
a delegation the dependent delegations must be valid. Such
transitive delegation is limited by availability as well as trust
between RM entities. A manager which over-commits re-
sources will not be able to make good on its promises if too
many clients attempt to use the resource delegations at the
same time. Viewing capacity guarantees and submission as
delegation simplifies the modeling of heavy-weight brokers
or service providers, but it also requires a trust/policy eval-
uation in each delegation step. A manager may restrict its
delegations to only permit certain use of the resource by
a client—this client may attempt to broker the resource to
other clients, but those clients will be blocked when they try
to access the resource and the manager cannot validate the
delegation chain.

7.2 Effects of Distribution

Collective resource scenarios are the key motivation for
Grid RM. In our architecture, the local resource managers
do not solve these collective problems. The user, or an agent
of the user, must obtain capacity delegations from each of
the relevant resource managers in a resource chain. There
are a variety of brokering techniques which may help in this
situation, and we believe the appropriate technique must be
chosen by the user or community. The underlying Grid RM
architecture must remain open enough to support multiple
concurrent brokering strategies across resources that might
be shared by multiple user communities.

Thus it is important to distinguish between the abstract
delegation chain that always extends from end-user to re-
source and the particular instantiated delegations used in
accounting or service guarantees. Furthermore, the decision
of what delegations are hidden or publicized is a matter of
information-access policy.

8 Other Related Work

Numerous researchers have investigated approaches to
QoS delivery [23]and resource reservation for networks [11,
14, 40], CPUs [25], and other resources.

Proposals for advance reservations typically employ
cooperating servers that coordinate advance reservations
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along an end-to-end path [40, 14, 11, 24]. Techniques have
been proposed for representing advance reservations, for
balancing immediate and advance reservations [14], for ad-
vance reservation of predictive flows [11]. However, this
work has not addressed the co-reservation of resources of
different types.

The Condor high-throughput scheduler can manage net-
work resources for its jobs. However, it does not interact
with underlying network managers to provide service guar-
antees [2] so this solution is inadequate for decentralized
environments where network admission-control cannot be
simulated in this way by the job scheduler.

The concept of a bandwidth broker is due to Jacobson.
The Internet 2 Qbone initiative and the related Bandwidth
Broker Working Group are developing testbeds and require-
ments specifications and design approaches for bandwidth
brokering approaches intended to scale to the Internet [37].
However, advance reservations do not form part of their de-
sign. Other groups have investigated the use of differen-
tiated services (e.g., [42]) but not for multiple flow types.
The co-reservation of multiple resource types has been in-
vestigated in the multimedia community: see, for exam-
ple, [28, 30, 29]. However, these techniques are specialized
to specific resource types.

The Common Open Policy Service (COPS) protocol [3]
is a simple protocol for the exchange of policy information
between a Policy Decision Point (PDP) and its communica-
tion peer, called Policy Enforcement Point (PEP). Commu-
nication between PEP and PDP is done by using a persistent
TCP connection in the form of a stateful request/decision
exchange. COPS offers a flexible and extensible mecha-
nism for the exchange of policy information by the use of
the client-type object in its messages. There are currently
two classes of COPS client:

Outsourcing provides an asynchronous model for the
propagation of policy decision requests. Messages are
initiated by the PEP which is actively requesting deci-
sions from its PDP.

Provisioning in COPS follows a synchronous model in
which the policy propagation is initiated by the PDP.

COPS outsourcing maps well to the SNAP agreement
model, but the provisioning model is not supported. SNAP
resource managers run decoupled from the client—a client
may affect the policy state of the manager, and the manager
may notify the client of important events, but the manager
never stops to request new policy from the client.

8.1 GRAM

The Globus Resource Allocation Manager (GRAM) pro-
vides job submission on distributed compute resources. It
defines APIs and protocols that allow clients to securely

instantiate job running agreements with remote sched-
ulers [9]. In [10], we presented a light-weight, opportunis-
tic broker called DUROC that enabled simultaneous co-
allocation of distributed resources by layering on top of the
GRAM API. This broker was used extensively to execute
large-scale parallel simulations, illustrating the challenge
of coordinating computers from different domains and re-
quiring out-of-band resource provisioning agreements for
the runs [5, 4]. In exploration of end-to-end resource chal-
lenges, this broker was more recently used to acquire clus-
tered storage nodes for real-time access to large scientific
datasets for exploratory visualization [7].

8.2 GARA

The General-purpose Architecture for Reservation and
Allocation (GARA) provides advance reservations and end-
to-end management for quality of service on different types
of resources, including networks, CPUs, and disks [21, 22].
It defines APIs that allows users and applications to manip-
ulate reservations of different resources in uniform ways.
For networking resources, GARA implements a specific
network resource manager which can be viewed as a band-
width broker.

In [34], we presented a bandwidth broker architecture
and protocol that addresses the problem of diverse trust
relationships and usage policies that can apply in multi-
domain network reservations. In this architecture, individ-
ual BBs communicate via bilaterally authenticated channels
between peered domains. Our protocol provides the secure
transport of requests from source domain to destination do-
main, with each bandwidth broker on the path being able
to enforce local policies and modify the request with ad-
ditional constraints. The lack of a transitive trust relation
between source- and end-domain is addressed by a delega-
tion model where each bandwidth broker on the path being
able to identify all upstream partners by accessing the cre-
dentials of the full delegation chain.

9 Conclusions

We have presented a new model and protocol for man-
aging the process of negotiating access to, and use of, re-
sources in a distributed system. In contrast to other ar-
chitectures that focus on managing particular types of re-
sources (e.g., CPUs or networks), our Service Negotiation
and Acquisition Protocol (SNAP) defines a general frame-
work within which reservation, acquisition, task submis-
sion, and binding of tasks to resources can be expressed for
any resource in a uniform fashion.

We have not yet validated the SNAP model and design
in an implementation. However, we assert that these ideas
have merit in and of themselves, and also note that most
have already been explored in limited form within the cur-
rent GRAM protocol and/or the GARA prototype system.
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